Mathematical Problem Solving - On Some Constraints in Teaching and Research

##plugins.themes.bootstrap3.article.main##

Bernd Zimmermann

Abstract

Teaching of problem solving as well as research in problem solving are subjected to many different constraints and hidden assumptions. Many of the constraints for teaching hold as well for research in these areas. The detection and the analysis of such issues are carried out on the background of concrete elucidating examples (“proofs of existence”). We conclude with some theses, related to such constraints as “As well teachers as researchers should be much more aware on their respective belief-system” and “There should be more analysis and reflection about possible constraints and limits on own studies on problem-solving and metacognition.” Some own reflections on possible constraints of this study are presented as well.

Downloads

Download data is not yet available.

##plugins.themes.bootstrap3.article.details##

Section
Articles

References

Adorno, Theodor W.; et al. (Eds., 1976). The Positivist Dispute in German Sociology, translated by Glyn Adey and David Frisby. London: Heinemann.

Bigalke, H.-G. (1974). Sinn und Bedeutung der Mathematikdidaktik (Meaning and Importance of Mathematics Education). In: ZDM 6, 109-115.

Bigalke, H.-G. (1978). Mathematikdidaktik wissenschaftstheoretisch diskutiert (Mathematics Education discussed on the background of Philosophy of Science).

Bishop, A. (1988). Mathematical Enculturation. A cultural Perspective on Mathematical Education. Boston, Dordrecht, New York, London: Kluwer.

Burton, L. (2004). Mathematicians as Enquirers. Learning about Learning Mathematics. Chapter 6 together with N. Sinclair. Boston, Dordrecht, New York, London: Kluwer Academic Publishers.

Davis, P. & Hersh, R. (1981). The Mathematical Experience. Boston: Birkhäuser. Freudenthal, H. (1978). Weeding and Sowing. Preface to a Science of Mathematical

Education. Dordrecht, Boston: Kluwer.

G. W. Leibniz, New Essays on Human Understanding. Bk 1, Ch. ii, quoted from Sierpinska 1992, p. 35

- 12

Freudenthal, H. (1991). Revisiting Mathematics Education. China Lectures. Dordrecht, Boston, London: Kluwer Academic Publishers.

Fritzlar, T. (2004): Zur Sensibilität von Studierenden für die Komplexität problemorientierten Mathematikunterrichts. (On the Sensitivity of pre-service Teachers for the Complexity of problem-oriented Mathematics Instruction). Hamburg: Verlag Dr. Kovač.

Gueudet, G, Bosch, M., di Sessa, A. A., Kwon O. N., & Verschaffel, L. (2016). Transitions in Mathematics Education. ICME-13 Topical Surveys. Springer Open.

Haapasalo. L., & Zimmermann, B. (2015). Investigating Mathematical Beliefs by Using a Framework from the History of Mathematics. In C. Bernack-Schüler, R. Erens, A. Eichler, & T. Leuders (Eds.), Views and Beliefs in Mathematics Education. Results of the 19th MAVI-Conference (pp. 197 – 211), Wiesbaden: Springer-Spektrum.

Hadamard, J. (1996). The Mathematician’s Mind. The Psychology of Invention in the Mathematical Field. With a new preface by P. N. Johnson-Laird. Princeton. New Jersey: Princeton University Press.

Hilton, P. J. (1981). Avoiding Math Avoidance. In: L. A. Steen (Ed.), Mathematics Tomorrow

(pp. 73 – 82). Berlin, Heidelberg, New York: J. Springer.

Houts, P. L. (Ed. 1977). The Myth of Measurability. New York City: Hart Publishing Company.

Jahnke, Th. 2010. Vom mählichen Verschwinden des Fachs aus der Mathe-matikdidaktik. (About the slowly vanishing of the subject out of mathematics education). In: Lindmeier, A., Ufer, S. Beiträge zum Mathematikunterricht 2010. München, 441-444.

Kießwetter, K. (1985). Heureka, IV. University of Hamburg, Department of Education. Kießwetter, Karl (2002): Unzulänglich vermessen und vermessen unzulänglich: PISA & Co.

(Measured inadequately and impudent measured: PISA & Co.) In Mitteilungen der

Deutschen Mathematiker-Vereinigung 4/2002, 49–58

Kilpatrick, J. (1987). Georges Pólya’s Influence on Mathematics Education. In: Mathematics Magazine, Vol. 60, No. 5, December, 299 - 300.

Kilpatrick, J. (1992). Beyond Face Value: Assessing Research in Mathematics Education. In

G. Nissen & M. Bomhøj (Eds.), Criteria for Scientific Quality and Relevance in the Didactics of Mathematics. Report from symposium held in Gilleleje, Denmark, from April

to May 2, 1992. Danish Research Council for the Humanities. The Initiative: Mathematics Teaching and Democracy.

Klein, F. (1933). Elementarmathematik vom höheren Standpunkte aus, Vol. I: Arithmetik- Algebra-Analysis. Berlin: Julius Springer.

Klein, F. (1908/1939). Elementary Mathematics from an Advanced Standpoint. Part I: Arithmetic, Algebra, Analysis. Part II: Geometry. (E. R. Hedrick & C. A. Noble, Translation of the German Edition above). New York: Dover Publications.

Lax, A. & Groat, G. (1981). Learning Mathematics. In: L. A. Steen (Ed.), Mathematics Tomorrow (pp. 83 – 94). Berlin, Heidelberg, New York: J. Springer.

Leder, G.C., Pehkonen, E., & Törner, G. (Eds., 2002). Beliefs: A Hidden Variable in Mathematics Education? Dordrecht: Kluwer.

NCTM (2000). Principles and standards for school mathematics. Reston, VA: NCTM.

Nolte, M. (1995). Die Faltaufgabe im Unterricht – Eine anspruchsvolle und reizvolle Aufgabe für alle? (The folding-problem in the Mathematics Lesson – a challenging and interesting Problem for all?) In B. Zimmermann. (Ed.), Kaleidoskop mathematischen Entdeckens (Kaleidoscope of Discovery in Mathematics; pp. 85 – 96). Bad Salzdetfurth u. Hildesheim: Verlag Franzbecker.

Poincaré, H. (1900). Du rôle de l’intuition et de la logique en mathématiques. (Intuition and logic within mathematics) In: Proceedings of the Second International Congress of Mathematicians, (pp. 115–130), Paris.

Schleicher, A. (2005). Analysis of the PISA process and its results. Lecture hold at the conference “Finland in PISA studies – Reasons behind the results, Helsinki, 14 March 2005”.

Schoenfeld, A. H. (2007). What Does It Mean to Do Rigorous Research in Mathematics Education? Lecture (ppt-file) presented at the joint meeting of DMV and GDM in Berlin.

Schoenfeld, A. H. (2008). Research methods in (mathematics) education. In Lynn English, David Kirshner (Eds.), Handbook of International Research in Mathematics Education. 2nd Edition. Chapter 19. Madison: Routledge.

Sierpinska, A. (1992). Criteria for Scientific Quality and Relevance in the Didactics of Mathematics. In G. Nissen & M. Bomhøj (Eds.), Criteria for Scientific Quality and Relevance in the Didactics of Mathematics. Report from symposium held in Gilleleje, Denmark, from April 27 to May 2, 1992. Danish Research Council for the Humanities. The Initiative: Mathematics Teaching and Democracy.

Thompson, A. G. (1992). Teacher’s Beliefs and Conceptions: A Synthesis of the Research. In D. A. Grouws (Ed.), Handbook of Research on Mathematics Teaching and Learning. A Project of the NCTM (pp. 127 – 146). New York: Macmillan Publishing Company.

Wagner, H., & Zimmermann, B. (1986). Identification and fostering of mathematically gifted students. Rationale of a pilot study. Educational Studies in Mathematics, 17(3), 243–260.

Zimmermann, B. (1979). Einige Vorbemerkungen zu einer Metatheorie der Mathematikdidaktik. (Some preliminary Remarks to a Metatheory of Mathematics Education.) In: Beiträge zum Mathematikunterricht 1979. Schroedel, Hannover 1979, 388– 390.

Zimmermann, B. (1981). Versuch einer Analyse von Strömungen in der Mathematikdidaktik. (Attempt to analyze Trends in Mathematics Education.) In: ZDM 1, 1981, p. 44 – 53. (English version: On some Trends in German Mathematics Education, ERIC, ED 221 372, Columbus, Ohio 1982.)

Zimmermann, B. (1991). Heuristik als ein Element mathematischer Denk- und Lernprozesse. Fallstudien zur Stellung mathematischer Heuristik im Bild von Mathematik bei Lehrern und Schülern sowie in der Geschichte der Mathematik. (Heuristics as an Element of Mathematical Thought and Learning Processes. Case Studies about the Place Value of Mathematical Heuristics in the Picture of Mathematics of Teachers and Students and in the History of Mathematics.) Habilitationsschrift (habilitation thesis). University of Hamburg, http://users.minet.uni-jena.de/~bezi/Literatur/ZimmermannHabil-beliefs- historyofheuristicsinclABSTRACT.pdf

Zimmermann, B. (1997). Problemorientation as a leading Idea in Mathematics Instruction. In

A. C. Monroy (Ed.), Memorias del VI Simposio Internacional en Educación Matemática Elfriede Wenzelburger. 13 al 15 Octubre, 1997. Ciudad de México, México. Conferencia Magistrale, p. 11 - 21.

Zimmermann, B. (1998). On Changing Patterns in the History of Mathematical Beliefs. In Törner, G. (Ed.), Current State of Research on Mathematical Beliefs VI. Proceedings of the MAVI-Workshop University of Duisburg (p. 107 – 117). Duisburg.

Zimmermann, B. (2016). Improving of Mathematical Problem-Solving – some new IDEAS from Old Resources. In P. Felmer, E. Pehkonen, & J. Kilpatrick (Eds.), Posing and solving mathematical problems: Advances and new perspectives (pp. 83–108). New York, Berlin, Heidelberg: Springer.

Zimmermann, B. (2016a). On Knowledge, Thinking and mathematical Thinking-Styles. In L. Eronen & B. Zimmermann, Mathematics and Education – Learning, Technology, Assessment (pp. 155 – 176). Münster: WTM.