# Teachers' Point of View in Teaching Mathematical Problem-Solving

## ##plugins.themes.bootstrap3.article.main##

## Abstract

### Downloads

## ##plugins.themes.bootstrap3.article.details##

## References

Ambrus, A. (2014). Teaching mathematical problem-solving with the brain in mind: How can opening a closed problem help? Center for Educational Policy Studies Journal, 4(2), 105-120.

Ambrus, A. (2015). A matematika tanulás-tanítás néhány kognitív pszichológiai kérdése [Some cognitive psychological questions in mathematics education]. Gradus, 2(2), 63-73.

Baddeley, A., Eysenck, M. W., & Anderson, M. C. (2009). Memory. New York: Psychology Press.

Clark, R. E., Sweller, J., & Kirschner, P. (2012). Putting Students on the Path to Learning. The Case for Fully Guided Instruction. American Educator, Spring, 6-11.

Dienes, Z. (1960). Building up mathematics. London: Hutchinson Educational.

Halmos, M., & Varga, T. (1978). Change in mathematics education since the late 1950’s – ideas and realisation: Hungary. Educational Studies in Mathematics, 9(2), 225-244.

Hattie, J., & Yates, G. (2014). Visible Learning and the Science of How We Learn. London: Routledge.

Kalyuga, S. (2007). Expertise reversal effect and its implications for learner-tailored instruction. Educational Psychology Review, 19, 509–539.

Kalyuga, S., Chandler, P., & Sweller, J. (1999). Managing split-attention and redundancy in multimedia instruction. Applied Cognitive Psychology,13, 351–371.

Kirschner, P. A. (2002). Cognitive load theory: Implications of cognitive load theory on the design of learning. Learning and Instruction, 12(1), 1–10.

Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why Minimal Guidance During Instruction Does Not Work: An Analysis of the Failure of Constructivist, Discovery, Problem Based, Experimental, and Inquiry-Based Teaching. Educational Psychologist, 41(2), 75-82.

Magyar Tudományos Akadémia. (2016). A Tanítói/tanári kérdőívre beküldött válaszok összesítése [Summary of responses to the primary/ secondary school teachers’ questionnaire]. Retrieved from http://mta.hu/data/dokumentumok/iii_osztaly/2016/tanitoi_tanari_kerdoiv_osszegzes_2016%20%281%29.pdf.

Miller, G.A. (1956). The magical number seven, plus or minus two: some limits on our capacity to process information. Psychological Review, 63(2), 81–97.

Paas, F. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: A Cognitive-load approach. Journal of Educational Psychology, 84, 429-434.

Paas, F., Tuovinen, J. E., Tabbers, H. K., & Van Gerven, P. W. M. (2003). Cognitive load measurement as a means to advance cognitive load theory. Educational Psychologist, 38 (1), 63–71.

Polya, G. (1957). How to solve it: A new aspect of mathematical method. Princeton, N. J: Princeton University Press.

Schoenfeld, A. H. (2007). What is Mathematical Proficiency and How Can It Be Assessed?. In A. H. Schoenfeld (Ed.), Assessing Mathematical Proficiency (pp. 59-76). Cambridge: Cambridge University Press.

Schoenfeld, A. H. (1985). Mathematical Problem Solving. New York: Academic Press.

Stahl, S. M., Davis, R.L., Kim, D.H., Lowe, N.G., Carlson, R.E., Fountain, K., & Grady, M.M. (2010). Play it again: The master psychopharmacology program as an example of interval learning in bite-sized portions. CNS Spectrums, 15(8), 491–504.

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257–285.

Sweller, J. (2003). Evolution of human cognitive architecture. In B. Ross (Ed.), The psychology of learning and motivation, 43, 215-266. San Diego: Academic Press.

Sweller, J., & Cooper, G. A. (1985). The use of worked examples as a substitute for problem solving in learning algebra. Cognition and Instruction, 2 (1), 59–89.

Sweller, J., Van Merriënboer, J., & Paas, F. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10 (3), 251–296.

Sweller, J., Clark, R. E., & Kirschner, P. A. (2010). Mathematical ability relies on knowledge, too. American Educator, 34(4), 34-35.

Sweller, J., Clark, R. E., & Kirschner, P. A. (2011). Teaching general problem solving does not lead to mathematical skills or knowledge. EMS Newsletter, March, 41-42.

Varga, T. (1965). The use of a composite method for the mathematical education of young children. Bulletin of the International Study Group for Mathematical Learning, 3(2), 1-9.